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Fig. 1. We introduce EyeNeRF, a novel hybrid representation for photorealistic modeling and synthesis of human eyes. Our technique combines an explicit
mesh based representation for the eyeball surface with an implicit neural representation for the periocular region (skin, eyelashes, eyelids etc.) and allows to
synthesize photoreal images with novel gaze from a novel viewpoint and under novel illumination.

A unique challenge in creating high-quality animatable and relightable 3D
avatars of real people is modeling human eyes, particularly in conjunction
with the surrounding periocular face region. The challenge of synthesizing
eyes is multifold as it requires 1) appropriate representations for the various
components of the eye and the periocular region for coherent viewpoint
synthesis, capable of representing diffuse, refractive and highly reflective
surfaces, 2) disentangling skin and eye appearance from environmental
illumination such that it may be rendered under novel lighting conditions,
and 3) capturing eyeball motion and the deformation of the surrounding
skin to enable re-gazing.

These challenges have traditionally necessitated the use of expensive
and cumbersome capture setups to obtain high-quality results, and even
then, modeling of the full eye region holistically has remained elusive. We
present a novel geometry and appearance representation that enables high-
fidelity capture and photorealistic animation, view synthesis and relighting
of the eye region using only a sparse set of lights and cameras. Our hybrid
representation combines an explicit parametric surface model for the eye-
ball surface with implicit deformable volumetric representations for the
periocular region and the interior of the eye. This novel hybrid model has
been designed specifically to address the various parts of that exception-
ally challenging facial area - the explicit eyeball surface allows modeling
refraction and high frequency specular reflection at the cornea, whereas
the implicit representation is well suited to model lower frequency skin
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reflection via spherical harmonics and can represent non-surface structures
such as hair (i.e. eyebrows) or highly diffuse volumetric bodies (i.e. sclera),
both of which are a challenge for explicit surface models. Tightly integrating
the two representations in a joint framework allows controlled photoreal
image synthesis and joint optimization of both the geometry parameters of
the eyeball and the implicit neural network in continuous 3D space. We show
that for high-resolution close-ups of the human eye, our model can synthe-
size high-fidelity animated gaze from novel views under unseen illumination
conditions, allowing to generate visually rich eye imagery.
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1 INTRODUCTION
“Eyes are windows to the soul” – while an old adage, it captures
what many media creators believe is an essential medium of human
expression. There is no dearth of close up shots of actor’s eyes on
screen - from expressing horror in Hitchcock’s Psycho (1960) to
showing excitement in Scorsese’s Goodfellas (1990) - such shots are
a favorite tool in a director’s toolbox. Recent research backs the art;
Lee and Anderson [2017] show that eyes provide not only important
social cues, but are overwhelmingly interpreted as diagnostic of
the subject’s emotional state even in presence of competing signals
from the lower face. Thus, it is only natural that as the graphics
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community embarks on another wave of photorealistic 3D avatar
technologies, sufficient attention is paid to the development of meth-
ods and systems that allow for fine-grained photorealistic control
over human eye imagery.

Modeling the eye region is challenging due to its complex anatomy
(see Fig. 2). The eyeball is a nearly smooth and rigid spheroid, which
experiences negligible deformation. Its outer surface consists of a
thin clear layer which is highly reflective. The corneal bulge is the
protruding center that allows light to enter the eye. The cornea
refracts light rays into the eyeball, which are further concentrated
by the iris sphincter into the pupil. On the other hand, the surround-
ing region of the eye consists of multiple non-rigid and deforming
materials like skin, eyelashes and eyebrows with fine geometry that
exhibit light scattering effects. The motion of the eyeball is con-
trolled by extraocular muscles that allow for fast rotation, while the
surrounding skin exhibits smooth non-linear deformation.
Modern eye reconstruction methods such as Bérard et al. [2016,

2019, 2014] achieve impressive results; they synthesize close to
photorealistic imagery of the eye, depending on the amount and
quality of data captured. Such methods however generally do not
reconstruct the periocular region including the eyelids, eyelashes,
eyebrows and periorbital skin, which are key to capturing eye ex-
pressions such as squinting, drooping, widening etc. An important
step towards holistic modeling of the eye region is the work of
Schwartz et al. [2020], which proposes a technique to drive eye gaze
in mesh based 3D avatars for VR communication. They achieve an
impressive level of control over animation of the eye gaze and con-
sistent deformation of the surrounding skin. While their application
warrants real-time performance, it suffers from other drawbacks
that come with mesh based 3D reconstruction techniques – it cannot
model fine structures of eyebrows and lashes and it requires a dense
multi-view capture setup to reconstruct themesh in a pre-processing
step. Their method does not disentangle the complex reflectance of
the eye and skin from the scene illumination, which makes it un-
suitable for the applications of high-quality image synthesis under
desired lighting environments.
In the more general setting, Park et al. [2021a] introduce De-

formable Neural Radiance Fields, also known as Nerfies, a general-
ization of the popular Neural Radiance Fields (NeRF) [Mildenhall
et al. 2020], which can be used to reconstruct and synthesize the
entire face and upper body through casual capture using a single
hand-held moving camera. This and other similar techniques includ-
ing [Park et al. 2021b; Pumarola et al. 2021; Tretschk et al. 2021] use
volumetric rendering in continuous 3D space using a multi-layer
perceptron to model the canonical shape of an object and learn
a warp field on top of it to model dynamic deformations in the
video sequence on a per-frame basis. While these techniques excel
at modeling both dynamic deformations of skin and thin structures
such as hair due to the underlying volumetric representation, they
are not animatable and do not provide a solution to modeling sur-
face reflectance and high-frequency light-transport effects such as
corneal light reflection and refraction associated with the eye, which
prohibits relighting. Works such as Bi et al. [2020]; Srinivasan et al.
[2021]; Zhang et al. [2021a,b] have extended volumetric rendering
models to further disentangle reflectance and scene lighting, initially

using single point light sources co-located with the camera to illu-
minate the scene and later generalizing to unconstrained lighting,
but only under rigid and static settings.
Inspired by these techniques, we propose a novel hybrid rep-

resentation that combines the best of mesh based and volumetric
reconstruction to achieve animatable synthesis of the eye region
under desired environmental lighting. We use a light-weight capture
system consisting of a small number of static cameras and lights
along with a single hand-held camera with a co-located light source.
We model the eyeball surface as an explicit mesh and the canonical
shape of the periocular skin region and the interior eye volume
using an implicit volumetric representation. The eyeball mesh is
used to explicitly compute specular reflections of light rays as well
as refraction of the camera rays at the cornea surface. The deforma-
tions of the surrounding skin and hair is computed using a learnt
warp field over the canonical volume. In order to achieve relighta-
bility, we learn the underlying reflectance represented by spherical
harmonics coefficients. The outgoing radiance is then computed as
a product of the reflectance and environmental illumination in the
3D frequency domain. We jointly optimize for the shape and pose
of the eyeball mesh and the density and reflectance in the implicit
volume, supervised to minimize the photometric loss between the
modeled outgoing radiance and pixel values in the captured video.

We show that our method is able to successfully reconstruct the
canonical geometry of the eye region and model it’s appearance by
accurately disentangling shading from diffuse and specular albedos
(see Fig. 1). This enables photorealistic view synthesis and relighting
by recomputing the shading under novel environmental illumina-
tion. Moreover, by interpolating between the learnt warp field of the
captured frames and rotating the explicit eyeball mesh, we achieve
fine-grained control over the subject’s gaze. We demonstrate these
capabilities of our method on several subjects with variation in face
and eye appearance. We summarize our contributions as follows:

(1) We propose a hybrid mesh + implicit volumetric representa-
tion that allows for modeling of complex reflectance and fine
scale geometry of the eye region.

(2) We design a capture system using only off-the-shelf hardware
that allows capturing data to disentangle appearance from
scene illumination to achieve high-frequency relighting.

(3) We demonstrate exciting animated and relit results on several
real subjects with varying facial and ocular characteristics.

2 RELATED WORK
Automatic reconstruction of human eye and face involves com-
plex modeling of geometry, appearance and deformation. Our work
builds on several lines of work that we discuss in greater detail here.

Eye Modeling and Synthesis. Photorealistic control of real eye
imagery has been important to various application domains. Image-
based techniques such as [Buehler et al. 2019; Ganin et al. 2016; He
et al. 2019; Kaur and Manduchi 2020, 2021; Kononenko and Lempit-
sky 2015; Lee et al. 2018; Shrivastava et al. 2017; Zheng et al. 2020]
have used eye keypoints, gaze direction or underlying segmentation
masks as control signals to synthesize eye images for a given sub-
ject. Such works are primarily focused on gaze redirection or gaze
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Fig. 2. The eyeball and the periocular region exhibit very different geometry,
motion and appearance characteristics. The eyeball is rigid, rotating and
reflective/refractive, whereas the surrounding region is non-rigid, smoothly
deforming and light-scattering. Hence, we use different representations to
model each of these parts.

correction application for portrait images and videos. A comple-
mentary line of work [Lu et al. 2015; Sugano et al. 2014; Wang et al.
2018; Wu et al. 2019; Zhang et al. 2015] explores appearance based
gaze estimation using analysis by synthesis techniques. Real-time
control of gaze is also crucial to avatar based communication in
AR/VR settings. Thies et al. [2018, 2016] propose facial reenactment
systems using a head-mounted display (HMD) that performs gaze
estimation using IR cameras inside the device and photorealistically
resynthesizes the subject’s face from an external camera with de-
sired gaze direction. Schwartz et al. [2020] extend this application by
fully modeling the eyeball using a parametric eye model. They also
model view-dependent texture and periocular deformation using a
neural rendering network. While these technique excel at control-
ling gaze, they do not model the complex reflectance characteristics
of the eye and hence cannot resynthesize it under novel lighting.
Bérard et al. [2014] propose a capture system to model subject-

specific eyeball characteristics such as the white sclera, the trans-
parent cornea, and the non-rigidly deforming colored iris. Using
multi-view close-up images of the eye, they reconstruct the geom-
etry, appearance and deformation of individual parts of the eye
to generate a high-quality graphical model for computer graphics
applications. Bérard et al. [2016] extend this work by leveraging a
database of eye images to generate a prior to constrain the eyeball
shape and iris texture and deformation. This enables a lightweight
technique to generate graphics models of eyes even from single in-
the-wild close up photographs. Bérard et al. [2019] focus on rigging
a parametric eye model by reconstructing accurate eye poses from a
multi-view capture. They estimate subject-specific geometry prop-
erties such as eyeball shape, rotation center, inter-ocular distance
and visual axis by optimizing the reprojection error of manually
annotated 2D eye keypoints and contours. These techniques aim
at modeling the appearance and geometry of the eyeball in great
detail, but do not model the fine scale structure and deformations
of the periocular face region.

Volumetric Deformable Surfaces. Neural Volumes [Lombardi et al.
2019] and NeRF [Mildenhall et al. 2020] introduced implicit neural
network based volumetric reconstruction from multi-view imagery

that enables photorealistic novel view synthesis of scenes. Such a rep-
resentation is particularly well suited for capturing view-dependent
appearance, such as on skin, and volumetric effects, including hair,
and hence is a suitable representation for capturing digital versions
of real people. But in order to realistically animate such a model,
it is important to also learn the modes of deformation of skin and
hair. [Gafni et al. 2021] densely tracked a face in a monocular video
sequence using a parametric face model and reprojected it into 3D
space to learn an implicit canonical volume. This allowed them to
control face pose and also perform dynamic animations with it by
modifying the face model parameters at test time. But this method
relies on a differential face model to model the deformation.
Park et al. [2021a] introduced an extension to NeRF, called Ner-

fies, that learns a canonical volume of a deforming object such as
the upper torso of a person, and also generates a learnt per-frame
deformation field that warps the volume in order to synthesize the
corresponding ground-truth image. [Li et al. 2021; Pumarola et al.
2021; Tretschk et al. 2021; Xian et al. 2021] concurrently proposed
methods with similar underlying principles. These methods showed
that it is possible to not only extract neutral volume density of a
non-rigid scene, but also learn the modes of deformation of such
a volume without any priors, using only monocular video capture
from a freely moving camera.

Reflectance Modeling and Relighting. Methods such as [Shu et al.
2017; Zhou et al. 2019] have achieved environmental relighting
of portrait images from casual monocular capture, but produce
only diffuse lighting effects and hence do not achieve photorealism.
Amongst image-based techniques, Debevec et al. [2000a] was the
first to achieve accurate high-frequency relighting of a static face
by acquiring the full reflectance field using a Light Stage, a dome
containing densely distributed calibrated lights and cameras. More
recently, Light Stage data has been used to train neural rendering
techniques to relight in-the-wild images [B R et al. 2021; Mallikarjun
et al. 2021; Pandey et al. 2021], dynamic sequences [Meka et al. 2019],
animatable avatars [Bi et al. 2021] and denser portrait reflectance
fields [Sun et al. 2020]. Differentiable ray-tracers have also been
used to inverse render portrait images to disentangle reflectance
and scene lighting [Dib et al. 2021; Zhang et al. 2021a].

Amongst implicit volumetric reconstruction techniques, Bi et al.
[2020] were one of the first to estimate higher-order surface re-
flectance and visibility in the scene. They use unstructured flash
images from a camera with a collocated point light source to learn
volume density and reflectance (parameterized as Disney BRDF pa-
rameters of diffuse albedo and specular roughness), enabling them
to relight the scene under any point light source. Sun et al. [2021]
train their model on synthetic data to estimate the light transport
field in 3D from multi-view portrait images. Their method achieves
convincing reflectance decomposition and relighting, but is limited
by the photorealism of the synthetic training data. Boss et al. [2021];
Srinivasan et al. [2021]; Zhang et al. [2021c,b] extend volumetric
scene representation to further factorize the radiance field in dense
lighting and reflectance and other components such as visiblity and
indirect illumination, enabling full environmental relighting of the
scene. These techniques are constrained to rigid and static settings.
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Our method takes inspiration from explicit eyeball modeling
methods of Bérard et al. [2016, 2019, 2014] for the eyeball surface,
the deformable volumetric reconstruction of Park et al. [2021a]
for the periocular region and the volumetric relighting technique
of Bi et al. [2020] to disentangle reflectance from environmental
lighting using a sparse multi-view capture setup including a single
handheld freely-moving camera with a co-located light source, and
the lighting visibility model from [Srinivasan et al. 2021] which
avoids expensive secondary reflection rays by approximating self
occlusion using a neural network.

3 HYBRID MODEL
The eye region is comprised of components with vastly different
visual properties. The surface of the eye is so specular that it mir-
rors the environment [Nishino and Nayar 2006] overlaid over the
underlying iris, which is heavily distorted through the optical re-
fraction at the corneal surface, especially for side-views. The white
sclera is highly scattering, exhibiting veins at different depths inside.
The eye is embedded in the periocular region, further adding to
the challenge as it combines highly deforming skin and hair from
lashes and brows. To address this large diversity, we propose a novel
hybrid model that combines the strengths of explicit and implicit
representations. In this section we describe the individual parts of
the model and how they fit together.

3.1 Explicit Eyeball Surface Model
To model the highly reflective and refractive eyeball surface we
represent it with an explicit parametric shape model–concretely we
employ a variant of the LeGrand eye model [Le Grand 1957], which
consists of two overlapping spheres, but other parametric models
could be used as well. The model is fully parameterized by 3 parame-
ters: iris radius 𝑏, which specifies the width of the intersecting circle

dc

bof the eyeball and cornea spheres, the iris
offset 𝑐 which specifies the distance of
the aforementioned circle from the eye-
ball center, and the cornea offset 𝑑 , which
specifies the relative distance of the two
sphere centers. These values can then
be used to derive the main eyeball ra-
dius as well as the cornea radius. Akin to
Schwartz et al. [2020] we smoothly blend
the eyeball and corneal sphere at the tran-
sition (limbus). This blending is controlled by two additional learn-
able parameters, determining where the transitions on the eyeball
and corneal spheres start. The model is discretized as a triangular
mesh with 10242 vertices, and enriched with per-vertex displace-
ments, which enable the surface to represent shapes that lie outside
the model’s subspace. We then compute the shading normals at each
vertex (used for refraction and reflection) by interpolating between
the neighboring face normals weighted by their vertex angle. For
the index of refraction (IOR), we use the value of 1.4, which is a
reasonable value for the human cornea [De Freitas et al. 2013; Patel
et al. 1995]. While we assume the eyeball surface to remain static
for a subject, its pose changes as a function of gaze. Though eye
gaze is often modelled as a 2-DoF rotation only, it is actually more

complex than that [Bérard et al. 2019] and hence we model its mo-
tion by a 6-DoF transformation per frame, encoded in axis angle
representation, with translation being applied after rotation.

3.2 Implicit Eye Interior and Periocular Model
The highly scattering sclera, the volumetric iris, the transition be-
tween eyelid and eye, and especially hair fibers present a formidable
challenge for explicit models, and so we argue that an implicit rep-
resentation is better suited to represent the periocular region and to
seamlessly integrate with the eye. Since the skin deforms during ac-
quisition we base our representation on Nerfies [Park et al. 2021a],
which employs warp fields to transform frames into a common
canonical space, where an MLP network encodes opacity and ap-
pearance values as proposed by the seminal NeRF paper [Mildenhall
et al. 2020]. The warp field is defined by a secondary MLP which
predicts a rotation quaternion and translation vector. We combine
the smooth warp field proposed by Nerfies with the rigid transfor-
mation from the eyeball surface to explicitly transport rays to a
canonical eye volume once they intersect the eyeball surface, where
the NeRF encodes the interior.

3.2.1 NeRF-SHL. To enable relightingwe propose NeRF-SHL (NeRF
with Spherical Harmonics Lighting), which extends the traditional
NeRF network as proposed by Mildenhall et al. [2020] to addition-
ally predict spherical harmonics coefficients alongside opacity and
albedo. These coefficients are used to predict the exiting radiance
given an environment map and implicitly approximate various light-
transport effects, including reflectance, subsurface scattering, occlu-
sion, and indirect illumination. To better model the combination of
diffuse and specular reflectance, we predict two sets of SH coeffi-
cients, using 5th order SH for the diffuse and 8th order SH for the
specular reflectance. As diffuse reflectance is constant with regards
to the outgoing light direction, only the specular SH coefficients
are conditioned on the view direction. The network takes as input a
3D World-Space point and its corresponding 3D NeRF-Space point
alongside their positional encodings as well as the view direction
and outputs diffuse and specular spherical harmonics coefficients
for the query point (Fig. 3). These are integrated with the environ-
ment illumination and combined to produce the RGB value. As in
the original NeRF network, we constrain the opacity to be positive
using a relu activation, and we apply a sigmoid to the albedo, similar
to how the RGB is constrained in the original network. Additionally,
we apply a softplus activation function to the 0th degree spherical
harmonics function to force it to be positive, as that particular spher-
ical harmonic corresponds to the uniform function which needs to
be positive for any physically correct light transport function. A
schematic of the network architecture is shown in Fig. 4.

3.3 Illumination Model
Environmental illumination is represented as a lat-long environ-
ment map 𝐸 (𝜔𝑖 ), which determines the amount of radiance entering
the scene from a direction 𝜔𝑖 . While relighting the explicit eyeball
surface can consume the environment map directly, it needs to be
converted to a spherical harmonics representation for relighting
the implicit parts of the model to be compatible with our network
architecture as introduced in Sec. 3.2.1.
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Fig. 3. Hybrid Model Evaluation. For every 3D point in world space and a view direction, our hybrid model is trained to output the corresponding RGB
color and opacity value. We first transform the 3D world-space point to the canonical NeRF space by using the learned per-frame rigid eyeball transformation
or warp field, depending on whether the point lies inside the eyeball. Next, we evaluate our NeRF-SHL to obtain the opacity, the albedo, and specular and
diffuse spherical harmonics (SH) coefficients. The SH coefficients are multiplied with the pre-computed SH representation of the environment map and
composited with the albedo to obtain the final RGB color for the 3D point.
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Fig. 4. The architecture for NeRF-SHL can be divided intro three branches.
The first branch predicts opacity and albedo from the 3D point in canonical
NeRF space. For the second branch, we additionally feed the 3D world-space
point as input to better model shadowing. Lastly, we add the view direction
input for the branch that predicts specular SH coefficients.

Spherical Harmonics Precomputation. We start with the standard
light transport equation (without emission), at any given point x
and outgoing light direction (or camera direction) 𝜔𝑜 :

𝐿𝑜 (x, 𝜔𝑜 ) =
∫
Ω
𝑓 (x, 𝜔𝑜 , 𝜔𝑖 )𝐿𝑖 (x, 𝜔𝑖 )𝑑𝜔𝑖 . (1)

In our model, 𝐿𝑖 includes all incident light at position x, i.e. light
from both direct and indirect light as well as incident illumination
from subsurface scattering, and hence 𝑓 approximates the full light
transport at x for the entire sphere Ω. We can therefore reformulate
this equation to instead determine the amount of light transported

from the environment map 𝐸 via a point x towards 𝜔𝑜 as

𝐿𝑜 (x, 𝜔𝑜 ) =
∫
Ω
𝑓tot (x, 𝜔𝑜 , 𝜔𝑖 )𝐸 (𝜔𝑖 )𝑑𝜔𝑖 . (2)

While intractable with traditional computer graphics methods, it is
possible to approximate 𝑓tot using machine learning techniques. We
can approximate 𝑓tot using the spherical harmonics basis functions
𝑌𝑙𝑚 and their corresponding coefficients 𝑐𝑙𝑚

𝑓tot(x,𝜔𝑜 ,𝜔𝑖 ) ≈
order∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑐𝑙𝑚 (x, 𝜔𝑜 )𝑌𝑙𝑚 (𝜔𝑖 ) , (3)

resulting in our approximation

𝐿𝑜 (x, 𝜔𝑜 ) ≈
∫
Ω

order∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑐𝑙𝑚 (x, 𝜔𝑜 )𝑌𝑙𝑚 (𝜔𝑖 )𝐸 (𝜔𝑖 )𝑑𝜔𝑖 . (4)

By using associativity of sums and integrals as well as distributivity
of sums and products, we can reorder Eq. 4 such that the integral
can be precomputed independently of the coefficients

𝐿𝑜 (x, 𝜔𝑜 ) ≈
order∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑐𝑙𝑚 (𝑥, 𝜔𝑜 )
(∫

Ω
𝑌𝑙𝑚 (𝜔𝑖 )𝐸 (𝜔𝑖 )𝑑𝜔𝑖

)
. (5)

Most notably, the integral is now independent of the conditioning
variables, x and 𝜔𝑜 , which allows to compute the integral once for
each spherical harmonics order and degree for a given environment
map, making model training in Sec. 5.4 tractable. As described in
Sec. 5 we capture our subjects under a mixture of static environment
illumination and a moving point light, and precompute a spherical
harmonics representation for both. We rotate these representations
appropriately to compensate for head-rotation, which can be done
efficiently as outlined in Appendix A. Lastly, the SH coefficients
of the moving light are scaled as a function of the distance to the
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subject to account for squared intensity falloff and the two sets of
coefficients are summed to allow relighting of our implicit model.

4 MODEL EVALUATION
The presented model can be evaluated for a desired gaze direction
and rendered from novel viewpoints under novel illumination.

4.1 Gaze Animation
Trained on a diverse set of discrete gaze directions, EyeNeRF al-
lows continuous re-animation of the eye and surrounding region
by interpolating the deformation fields and eyeball poses of the
discrete training data. Given a novel gaze direction 𝛾 the first step
is to identify three gaze directions 𝛾𝑖 which form a convex hull that
contains the target gaze direction. For this, we project all training
gaze directions onto the unit sphere by applying their respective
rigid eyeball transforms to the unit vector (0, 0, 1)⊤ and triangulate
those points using the Ball-pivoting Algorithm [Bernardini et al.
1999; Zhou et al. 2018] to obtain a discrete mesh. We compute the
intersection of the target gaze direction 𝛾 with this mesh. The ver-
tices of the intersected triangle are the desired discrete gazes 𝛾𝑖
and the barycentric weights of the intersection point serve as inter-
polation weights which are then used to blend the warp fields of
the three sample gaze directions by linearly interpolating between
the warped points. This method limits novel gazes to be within the
gaze distribution from the training set, which is reasonable since
we capture the full range of motion of the eye during acquisition.

For the eyeball transformation, we consider the translation and
rotation components separately. The translation is interpolated us-
ing barycentric weights as done for the warp field. The rotation
on the other hand is more challenging, since the basic spherical
linear interpolation (slerp) leads to unnatural eye motion. Instead,
we independently rotate the eyeball for each sample gaze to the
target gaze, and slerp the resulting poses sequentially. We found that
this yields satisfactory eye motion, but more advanced eye rigging
methods, such as the Listings model used in [Bérard et al. 2019],
could also be integrated with the proposed hybrid model.

4.2 Rendering
Once the interpolated warp field and rigid transformation have
been computed, the goal is to render an image for a given camera
and environmental illumination. Fig. 5 provides a schematic of the
approach presented below.

4.2.1 Ray Computation and Intersection. For each pixel in the image
we compute the camera ray 𝑟𝑐 and trace it through the scene within
appropriate clipping planes. We start by testing if the ray intersects
with the explicit eyeball surface using Trimesh [Dawson-Haggerty
et al. [n.d.]], a raytracer implemented using Embree [Wald et al.
2014]. In case there is an intersection, we calculate appropriate
reflection and refraction rays at the corneal surface using Snell’s
law, splitting the original ray into three parts: The pre-intersect
ray 𝑟𝑐 , the refracted ray 𝑟𝑒 , and the reflected ray 𝑟𝑟 . If there is no
intersection, we only need to consider the pre-intersect ray 𝑟𝑐 .

4.2.2 Point Sampling and Transformation. As depicted in Fig. 3 and
Fig. 5, we sample points along the three rays and transform them to

Warp

Transform

3D Space Canonical NeRF Spacer c

r r

r e

r̃ e

r̃ c
r̃ r

Fig. 5. EyeNeRF uses raytracing to compute reflection 𝑟𝑟 and refraction 𝑟𝑒
rays by intersecting with the explicit eyeball surface. Those rays are then
used to raymarch the implicit representation. Points are sampled in 3D
Space, and then transformed to the canonical NeRF Space. Points sampled
from the refraction ray 𝑟𝑒 are transformed rigidly by the inverse estimated
eyeball pose (green points) where points sampled from the other rays are
warped non-rigidly by the learned warp field (red triangles).

the canonical NeRF volume. Following [Mildenhall et al. 2020] we
employ a combination of equidistant and importance sampling in
3D world-space to determine the sample points. For each sample
point of the pre-intersect and reflected rays, we evaluate the warp
field neural network and warp the points accordingly, akin to Park
et al. [2021a], leading to sample points along the distorted rays 𝑟𝑐
and 𝑟𝑟 in the canonical 3D NeRF-space (red triangles in Fig. 5). For
each sample point on the refracted ray, we apply the inverse of the
rigid eyeball transform leading to sample points in the canonical
3D NeRF-space of the eye (green circles in Fig. 5).

4.2.3 Point Shading. Next, we calculate the contribution of the il-
lumination from the environment map for each sample point. We
then query NeRF-SHL to obtain albedo and opacity, as well as spec-
ular and diffuse SH coefficients that determine the amount of light
transported from the environment map at the queried volume point
towards the queried camera ray direction. Incident illumination and
transfer function are integrated by multiplying the SH coefficients
with the precomputed SH environment coefficients, which is very
efficient. The final color value for the sample point is then obtained
by multiplying the diffuse lighting with the albedo and adding the
specular lighting. For the end point of each ray, i.e. when it is leaving
the captured volume, we add one sample point with infinite opacity
and a color value. For reflection rays the color is retrieved from the
environment map and for the other rays it is set to black. To account
for ambiguities in scale when reconstructing the environment map
using the mirror ball, we also learn a scale factor which is multiplied
with the environment map radiance sample.

4.2.4 Color Accumulation. The previous step provided opacity and
color for each of the 𝑁𝑆 sample points independently. To obtain
the contribution weight of each sample to the final color value,
we employ traditional volume rendering techniques [Kajiya and
Von Herzen 1984]. To this end, we calculate the accumulated trans-
mittance for each sample point based on the opacity of all previous
samples on the ray. In the traditional NeRF setting, the color value
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of a single ray 𝐶 (r) is computed using the following approximation
of the continuous integral along the ray

𝛼𝑖 = 𝑒−𝜎𝑖𝛿𝑖 𝑇𝑡 =

𝑡−1∏
𝑖=0

𝛼𝑖 𝐶 (r) =
𝑁𝑆∑
𝑡=0

𝑇𝑡 (1 − 𝛼𝑡 )c𝑡 (6)

where 𝜎𝑖 and c𝑖 are the predicted opacity and color for the 𝑖-th
sample, respectively, and 𝛿𝑖 represents the distance between the
𝑖-th and 𝑖 + 1-th sample. We refer the reader to Mildenhall et al.
[2020] for more details. In our implementation, we first compute
the color value of the reflected ray separately, and then merge the
refracted and pre-intersect ray using the Fresnel Equations [Fresnel
1868] (assuming unpolarized light), by combining the radiance of
the reflected ray with the last sample prior to the intersection using
standard alpha compositing rules, effectively placing it behind that
sample. We can then treat the resulting combined samples as one
ray, resulting in the following system of equations

𝛼 ′
𝑖 = 𝑒−𝜎

′
𝑖𝛿

′
𝑖 𝑇 ′

𝑡 =

𝑡−1∏
𝑖=0

𝛼 ′
𝑖 𝐶 (r′) =

𝑁 ′
𝑆∑

𝑡=0
𝑇 ′
𝑡 (1 − 𝛼 ′

𝑡 )c′𝑡

𝛼comb = 𝛼𝑘 (1 − 𝑓 ) 𝑐comb =
(1 − 𝛼𝑘 )c𝑘 + 𝑓 𝛼𝑘𝐶 (r′)

𝛼comb

c′′𝑖 =

{
c𝑖 𝑖 ≠ 𝑘

ccomb 𝑖 = 𝑘
𝛼 ′′
𝑖 =

{
𝛼𝑖 𝑖 ≠ 𝑘

𝛼comb 𝑖 = 𝑘

𝛼𝑖 = 𝑒−𝜎𝑖𝛿𝑖 𝑇𝑡 =

𝑡−1∏
𝑖=0

𝛼𝑖 𝐶 (r) =
𝑁𝑆∑
𝑡=0

𝑇𝑡 (1 − 𝛼 ′′
𝑡 )c′′𝑡

(7)

where 𝑓 is the Fresnel factor, 𝑘 is the index of the last sample prior to
the intersection, 𝛼 ′, etc. refer to values sampled along the reflected
ray, and 𝑐 ′′

𝑖
refers to the samples of the combined ray (which are

the same as the ones along the pre-intersect and refracted ray, other
than the sample prior to the eyeball intersection.

Rays that do not intersect the eye model are computed using the
original NeRF ray marching method (see Eq. 6).

5 MODEL TRAINING
High quality synthesis requires high-quality data. While there are
several publicly available eye image datasets, they are unfortunately
not directly suited for our purposes of view, gaze, and illumination
synthesis. The majority of these datasets are tailored for the task of
gaze-tracking [Fuhl et al. 2021; Fusek 2018; Kim et al. 2019; Tonsen
et al. 2017; Wood et al. 2015; Wu et al. 2020; Zhang et al. 2015] while
others cater to different problems such as pupil detection [Tonsen
et al. 2016], eye closure detection [Song et al. 2014] or eyelash
segmentation [Xiao et al. 2021]. While there are datasets that aim
at modeling high-quality eyes and periocular region [Bérard et al.
2019, 2014], these are not suited for relighting purposes.
Hence we built our own capture system that provides sufficient

signal for the task of gaze reanimation, view synthesis and relighting
of the periocular region. We detail our hardware setup and the
capture protocol below.

5.1 Capture System
We aim to minimize the complexity of our hardware to make our
solution cost and space effective. The subject sits on a chair in the

Fig. 6. left: Our static setup consists of 4 high-quality cameras (red) ar-
ranged in a diamond-shape and surrounded by 8 illuminators (yellow). right:
A set of AR markers is attached to the forehead of the subject to track head
movement as well as relative camera motion.

center of the setup shown in Fig. 6. Our multi-view setup consists
of 4 high quality, hardware synchronized cameras (Z-Cam E2 4K)
fixed in the frontal hemisphere of the subject, as well as a small,
lower quality mobile GoPro® Hero9 camera which is moved freely
by hand by the operator. The moving camera contains a co-located
LED light, which is crucial for relighting, as we demonstrate in the
next section. The subject is lit with 8 white LED point lights that are
nearly uniformly located over a 100◦ field-of-view (FOV) in front of
the subject. The cameras span roughly 75◦ horizontal FOV and 25◦
vertical FOV in front of the subject, arranged in a diamond shape.

In order to account for the free head motion of the subject, we
affix a set of small calibration markers on their forehead. These
calibration markers are used to localize both the subject’s head and
themoving camera with respect to the static setup.While we assume
that the eyeball is rigidly attached to the head, our method makes
no such assumption for the periocular region which can experience
strong deformations due to facial muscles and skin.

5.2 Capture Protocol
We capture subjects under four different conditions. In the first
condition, the subject is instructed to follow the mobile camera with
their gaze while keeping their head static and forward facing. The
mobile camera is translated freely, while orienting it towards the
subject’s head, covering about 60◦ horizontally and 30◦ vertically.
In this setting, we only use the 8 static lights. Since the eye gaze
follows the mobile camera, we know the gaze direction and get a
good multi-view coverage of the eye from the 4 static cameras.
In the other three conditions, the subject is instructed to keep

their gaze focused on one of the four static cameras, switching their
gaze between them when instructed. Instead of moving their gaze,
they are instructed to rotate their head around, while attempting to
keep one eye roughly stationary, to keep that eye in frame and at
the same distance from the cameras. In order to more easily keep
track of where that eye was, we place a tripod below the subject’s
head for reference (not as chin rest). In these settings we get good
viewpoint coverage of the periocular region from the 4 cameras.

Each of these three conditions models a different illumination
scenario; static lights, mobile light, and both. This provides a good
mixture of frames where we have relatively flat lighting which is
useful for reconstructing the geometry, and very high frequency
lighting which can be used to learn shading and shadowing.
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Fig. 7. To improve initial network convergence, we start training with the
simplified architecture shown above, and later on continue to train the full
architecture as depicted in Fig. 4. The main difference is that here the diffuse
SH coefficients only depend on the the 3D NeRF-Space points, where in
the full model they also depend on the 3D World-Space points, in order to
better model shadowing.

For the demonstrations in this paper, we capture the performances
of 3 subjects with a variety of face shapes and eye colors.

5.3 Data Preprocessing
5.3.1 Cameras. Intrinsics for all cameras are calibrated using a
checkerboard pattern. Extrinsics of the static cameras are recovered
from the same calibration process. The extrinsics of the mobile
camera are estimated from the marker tags on the subjects forehead
using OpenCV. By also estimating the rigid transformation between
the static cameras and the subject we can relate all cameras into the
same world frame, registered to the subjects head.

5.3.2 Environment Illumination. We compute an HDR environment
map from a series of images from a mirror sphere with varying expo-
sure, similar to [Debevec et al. 2000b]. We capture an environment
map for the static illumination and the mobile light separately. Both
the mobile and static lights are captured only once; we model the
light motion using rotation and falloff as described in Section 3.3.

5.3.3 Model Initialization. Our method relies on an initial estimate
of the eyeball pose and shape. As the subject is instructed to look
at either the mobile camera or one of the static cameras, the initial
eye pose can be estimated from the line-of-sight that connects the
eyeball and camera centers. We manually initialize eyeball pose and
shape from three frames, roughly placing the eyeball in the correct
position and shape in a 3D modeling software (Blender). Note that
the initialization can be approximate, as it will be refined throughout
the training process as shown in Fig. 13.

5.4 Network Training
As the main training loss, we use the mean squared error in sRGB
space between the equidistant and importance sampled RGB values
and the target pixel in the training image. The loss is computed on
the outputs of the coarse and fine network

𝑙im = | |srgb(𝑥 ′) − srgb(𝑥 𝑓 ) | |22 + ||srgb(𝑥 ′), srgb(𝑥𝑐 ) | |22 . (8)

As the sRGB transformation is not meaningful above 1, we use a
linear transformation for such values. To encourage our hybrid
model to represent specular reflection on the sclera by the explicit

eyeball model, we ignore sclera pixels above a defined threshold
when training the implicit volume.

In addition, we employ the non-negative SH loss for regulariza-
tion. Each iteration, we randomly sample ten random directions,
check if there are any negative predicted SH response functions,
and then apply an 𝑙2 loss on negative values. This avoids dead zones
if the SH becomes negative. Furthermore, we observe that the dif-
fuse shading is almost never non-positive anyway, and only apply
this loss to the specular part of the shading. In order to reduce the
uncertainty between diffuse and specular shading, we furthermore
apply an 𝑙2 loss to the specular coefficients. These losses are applied
to the mean across all sample points.

𝑙noneg = E𝜔𝑖∼Ω [−min(0,
order∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑐𝑙𝑚 (x, 𝜔𝑜 )𝑌𝑙𝑚 (𝜔𝑖 ))]

𝑙spec =
1

(order + 1)2
order∑
𝑙=0

𝑙∑
𝑚=−𝑙

| |𝑐𝑙𝑚 (x, 𝜔𝑜 ) | |22

(9)

We then apply an L2 loss on the per-vertex offsets (𝑁𝑉 = 10242), to
avoid strong deviations from the underlying analytical model

𝑙off =

𝑁𝑉∑
𝑖=0

offset2𝑖 . (10)

Finally, we apply the same elastic regularization as used by Nerfies
[Park et al. 2021a] onto the warp field. We refer the reader to their
paper on more details on how this loss term is computed. This
results in our final loss function

𝑙tot = 𝜆im𝑙im+𝜆noneg𝑙noneg+𝜆spec𝑙spec+𝜆elastic𝑙elastic+𝜆off𝑙off (11)

where we use the empirically chosen weights 𝜆im = 1, 𝜆noneg = 1e-2,
𝜆spec = 5e-4, 𝜆elastic = 1e-3, 𝜆off = 1e-6.
We train EyeNeRF in three stages, using slightly different ar-

chitectures, on a total of 16 Nvidia V100s GPUs. First, we use the
simplified architecture for our NeRF-SHL as shown in Fig. 7 to fo-
cus on learning the eyeball model parameters and per-frame rigid
transformations. During this stage, every 50000 iterations, we addi-
tionally reset and reinitialize all learnable parameters other than the
ones for our parametric model. We observe that this re-initialization
greatly improves the final quality. This is due to two reasons. On
the one hand, every time we reinitialize the volume, we remove all
possible biases that may have been baked into the eyeball volume,
for example due to view dependent effects. On the other hand, by
resetting the volume we effectively blur it out, making the spatial
gradients much smoother and therefore easier to learn with. For
better signal when optimizing the eyeball pose and shape, we do
not ignore the sclera pixels during this stage. This takes a total of
approximately three days when trained on 8 of the 16 GPUs. Second,
we start training with our main NeRF-SHL architecture as shown in
Fig. 4 to obtain initial network weights (for the warp field network
and the NeRF-SHL network) helping robustness of the third step.
Note that this second step can take place in parallel with the first
as they do not depend on each other, and also takes approximately
three days, using the other 8 GPUs. Third, once the eyeball model
parameters and transformations have converged, we load them into
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Fig. 8. Ablation Study. We evaluate different design choices for EyeNeRF. Without the explicit eyeball model, the volumetric model fails to represent
reflection and refraction, leading to strong artifacts. Without the first training stage, the eyeball pose and shape is inaccurate (see novel side view) hence many
specular effects on the eyeball are not reproduced. Without the second training stage, the quality of the periocular region is reduced, yielding significant blur
in the images. Results from the simplified architecture or without disconnect look similar to EyeNeRF in the training view. However, they exhibit artifacts on
the iris and sclera for novel views or novel illumination conditions.

our main architecture and continue training for roughly 100,000
iterations. During this final training stage, we disconnect the dotted
connection in Fig. 4 for points inside the eyeball by conditionally
zeroing those values, to stronger condition the estimated SH light-
ing contribution on the world space points. We also disable the
contribution from the specular shading, in order to encourage our
network to model as much as possible using direct reflections. Dur-
ing this stage, we only use 8 GPUs, and train for roughly 24 hours.
As the first two stages are trained in parallel, our total pipeline can
be trained in around four days.

6 RESULTS AND EVALUATION
In this section, we discuss various results and evaluations of our
method. We opted to suppress rendering of the specular highlights
on the sclera for most results in this paper by using an IoR of zero

for the sclera surface, because even though the gross position of
the highlights on the optimized sclera are correct, their appearance
is visually off since the spatial resolution of our parametric eye
model is not high enough to represent the high frequency surface
variation caused by the lacrimal liquid and conjunctiva (see Fig. 9).
We start with an ablation study (Sec. 6.1) to evaluate our design
choices for EyeNeRF. Next, we compare to different baselines for
gaze redirection and relighting (Sec. 6.2). Section 6.3 provides addi-
tional qualitative results such as eye animation, view synthesis, and
relighting for different subjects as well as intrinsic decompositions
into albedo and shading.

6.1 Ablation Study
We evaluate the following settings in our ablation study. For network
architectures and training stages, please refer to Section 5.4.
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Ground Truth with Sclera Spec. w/o Sclera Spec.

Fig. 9. While the gross position of the highlights on the optimized sclera are
correct, their appearance is visually off since the spatial resolution of our
parametric eye model is not high enough to represent the high frequency
surface variation caused by the lacrimal liquid and conjunctiva.

Table 1. Results from our quantitative ablation study. Our full method
outperforms or achieves comparable performance with the ablation settings
on most metrics for all 3 tasks.

Novel View Regazing Relighting
MSE ↓ SSIM ↑ MSE ↓ SSIM ↑ MSE ↓ SSIM ↑

No Eyeball 1.10e-3 0.843 1.24e-3 0.838 9.62e-4 0.813
Simplified 9.74e-4 0.843 7.49e-4 0.853 7.53e-4 0.825
w/o Stage 1 1.03e-3 0.847 1.07e-3 0.844 8.68e-4 0.822
w/o Stage 2 1.78e-3 0.814 8.1e-4 0.835 7.58e-4 0.816
w/o Disc. 7.78e-4 0.854 7.22e-4 0.855 7.19e-4 0.828
EyeNeRF 7.67-4 0.863 7.23e-4 0.857 7.23e-4 0.829

• No Eye Model: We do not use the explicit eye model. There
is no explicit refraction or reflection and all points are trans-
formed using the warp field.

• Simplified Architecture: We only use the simplified archi-
tecture for NeRF-SHL (Fig. 7) and do not switch to the main
branched architecture (Fig. 4). Everything is trained in a single
training stage.

• Without Stage 1:We skip the first training stage in which
the eyeball model parameters and rigid transforms are pre-
trained. All parameters are directly trained using the main
branched architecture.

• Without Stage 2:We skip the second training stage in which
the NeRF-SHL and warp field weights are pretrained. Instead,
the weights are trained from scratch using the already refined
eyeball poses from the first training stage.

• Without Disconnect: Same as the final version but during
the final training stage, the dotted connection in Fig. 4 is not
disconnected.

Fig. 8 shows results of the ablation study. Please refer to our sup-
plemental video for more visuals. Without the eyeball model, the
specular highlights on the eye need to be modelled by the volumetric
representation. This leads to severe artifacts on the eyeball, espe-
cially for novel views or novel lighting scenarios. Without the first
training stage, the eyeball pose and shape is inaccurate as shown
in the novel side view. Due to the incorrectly placed eyeball, the
specular reflections are missing in many cases. Without the second
training stage, the quality of the periocular region degrades sig-
nificantly which is especially visible in areas with high-frequency
details such as the eyebrows. Whereas the results with the simplified
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Fig. 10. We compare with [He et al. 2019] for regazing. EyeNeRF controls
the gaze more accurately and preserves the identity better. Please note that
[He et al. 2019] operates on a single input image only, where ours is a much
more involved setting.

architecture or without disconnect look similar to EyeNeRF from
the training views, the iris and sclera quality reduces significantly
for novel views or novel lighting.
We show results from the quantitative ablation study for novel

view synthesis, regazing and relighting in Table 1. For novel view
synthesis, we select a number of frames, from which we exclude
one of the four camera views during training as a held-out test view.

For both regazing and relighting, we define a set of held-out test
frames, for which all camera views are excluded from training. For
regazing, we use frames from the sequence where the captured
subject holds their head still and looks at the moving camera. For
relighting, we use the sequence where only a moving light is used
for illumination. However, we note that our initial estimates for gaze
(see Section 5.3.3) are not completely accurate. For the test frames,
we optimize the eyeball pose using the same strategy as for train-
ing frames. We use the so-computed eyeball pose for synthesizing
the test frames using our trained model and perform quantitative
comparison with the ground-truth to obtain the results reported in
Table 1.

We compute SSIM and MSE as quantitative image comparison
metrics for models trained for all settings in the ablation study. As
our ablation study conditions primarily differ in how the eye is
modeled, we use a smaller 300x300 crop around the eye while com-
puting the metric, in order to more strongly focus on the eye itself.
Please note that these image metrics have their limitations, e.g. over-
penalizing misalignments or under-penalizing blur. Nonetheless,
the results indicate that our full method outperforms or is on par
with the other ablation study conditions.

6.2 Comparisons
We compare EyeNeRF to existing methods for regazing [He et al.
2019] and relighting [Pandey et al. 2021].

Regazing. We perform regazing on subject 1 and compare with
He et al. [2019] in Fig. 10. EyeNeRF can synthesize more extreme
gaze angles, it preserves the identity better, and shows less artifacts.
Note that their method is defined for a different setting, as it can be
applied for a single image, and works across multiple identities. Our
setting is much closer to that of Schwartz et al. [2020], who also use
multi-view footage of the same subject for regazing. Unfortunately
a direct comparison with Schwartz et al. [2020] is difficult because
their data capture setting uses a dense multi-view setup, and their
implementation is not available publicly or on request. Nonetheless,
we show a demonstrative comparison in Fig. 11. Our method enables
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Fig. 11. We compare an image synthesized by our method (right) with an
image generated by Schwartz et al. [2020] [©Schwartz et al.] (left). While
Schwartz et al. [2020] show that they can perform view synthesis and
regazing, their method does not allow for capturing high frequency skin/eye
reflectance, perform relighting or capturing and synthesizing thin structures
such as eyelashes and eyebrows in 3D.
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Fig. 12. We compare with Pandey et al. [2021] for relighting. EyeNeRF pro-
duces higher quality relighting, particularly the environmental reflections
on the eye.

additional capabilities such as high-quality relighting and 3D capture
of thin structures associated with the eye region.

Relighting. We compare environmental relighting on a single
frame against the state-of-the-art portrait relighting method of
Pandey et al. [2021] in Fig. 12. They use high-quality dense Light
Stage data to train their technique. While they do estimate sur-
face normals, they do not estimate the full 3D geometry of the face,
hence they are unable to model the full light transport. EyeNeRF can
synthesize very high quality relighting, including self-shadowing,
particularly in the eye region.

6.3 Additional Results
Eyeball Model Refinement. In Fig. 13, we demonstrate how EyeN-

eRF successfully refines the eyeball geometry during the course of
training. This leads to more accurately synthesized highlights and a
better aligned eyeball contour.

Synthesizing View, Lighting, and Gaze. In Fig. 15, we compare
our synthesized result to an unseen ground-truth image. We show
additional results in Fig. 14. For each subject, we show results for
deviating from a training frame by changing a single property (view,
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Fig. 13. The initial estimate (blue) for the eyeball pose and shape is refined
(orange) during training (Sec. 5.4). left row: the shape changes and the
sclera becomes bumpy while the cornea remains smooth. middle row: the
synthesized highlights (green) are initially off but coincide with the ground-
truth highlights for the converged shape. right: eyeball contours of subject
1 at the beginning (blue) and at the end of training (orange).

lighting condition, or gaze directions). Furthermore, EyeNeRF also
synthesizing compelling results for combinations of unseen scene
properties (view, lighting, and gaze) or relighting using an environ-
ment map.

Intrinsic Decomposition. In Fig. 16, we show the final rendered
image for different subjects as well as decompositions into albedo,
diffuse and specular shading.

7 DISCUSSION & LIMITATIONS
Although we demonstrate exceptional overall quality, our method
does still have a number of shortcomings and limitations.
One major drawback is the requirement of multiview, multi-

lighting, multi-gaze data. As previously mentioned, very few (if
any) datasets exist which contain all of the above. Furthermore,
capturing this kind of data, although lightweight compared to many
professional capture setups such as a full light stage, still requires
very high quality cameras and good lighting. Additionally, as we
capture the subjects under a variety of conditions, we require around
40 minutes per subject. To reduce complexity we rely on AR tags
to track the rigid pose, which requires attaching small tags to the
subjects face. Relying instead on a face tracker would be a more
convenient alternative.

Another drawback is the long training and evaluation time. Our
full pipeline takes around 4 days to train on 8 Nvidia V100s, and
currently requires about thirty seconds to render an 800x800 sized
image. The majority of the computational cost lies in the NeRF-
SHL and NeRFies networks and recently there have been a surge of
papers that greatly accelerate training such networks (e.g. [Müller
et al. 2022]).
A more fundamental limitation of our method is the inability to

model high frequency effects other than the cornea reflection. NeRF
and NeRF-like methods often already struggle with exceptionally
high frequency details, such as with the eyelashes, especially when
time-varying due to deformation. A lot of the detail loss can be
attributed to the deformation field, which struggles to accurately
warp the frames to the canonical volume, e.g. for the upper eyelid.

By approximating the light transport equation using spherical
harmonics, we are inherently limited by the frequency of the SH
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Novel Lighting Novel Gaze View+Lighting+Gaze Novel EnvironmentNovel View

Novel Lighting Novel Gaze View+Lighting+Gaze Novel EnvironmentNovel View

Novel Lighting Novel Gaze View+Lighting+Gaze Novel EnvironmentNovel View

Fig. 14. Here we show synthesis results for different subjects. In the three left columns, we vary only one attribute (view, lighting, or gaze) from a training
image. However, EyeNeRF can also generate combinations of unseen attributes (4th column) or use arbitrary environment maps for relighting (5th column).
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SynthesizedGround Truth Albedo Diffuse Specular Depth

Fig. 15. We show a side-by-side comparison with a ground-truth image that has not been seen during training (first two columns). The third to sixth columns
show the corresponding intrinsic decomposition.
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Fig. 16. Intrinsic decomposition results for different subjects. EyeNeRF is able to disentangle albedo, diffuse and specular shading.

degree we choose to use. As such, we are unable to model very
high frequency effects, such as strongly specular reflections on the
skin. As we model the entire light transport function using these
functions, this further implies that we have similar issues with high
frequency shadows for example. Since we designed our method for
human faces these problems are less of an issue, but we do not expect
EyeNeRF to work nearly as well in a more general setting. Going to
higher order SH will quickly become intractable as the number of
coefficients grows in a squared manner. A potential solution could
be to pool information spatially across a patch of skin and thus

provide more constraints to estimate the coefficients, or to explore
alternative reflectance representations (i.e. data driven priors).
Furthermore, we are currently unable to reconstruct the high-

frequency sclera reflections since the surface resolution of our eye-
ball model is not high enough. Increasing the resolution however
will only be beneficial up to a certain amount since learning high-
frequency spatial variation in the current setting is also limited by
the image resolution. At the current image resolution pixels are
either specular or not, which does not provide good gradients for
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learning. In addition we are currently not modeling the relative de-
formation of the conjunctiva and the sclera, which leads to blurred
veins, as well as the pupil dilation. Exploring deformation fields
within the eye itself could potentially address this.

Finally, we currently do not model expressions (lid closing, squint-
ing, smiling, etc), and assume the periocular shape is entirely corre-
lated to eye gaze. Additionally capturing expression and properly
disentangling gaze and expression would be an exciting avenue for
future work.

8 CONCLUSION
Wepresented EyeNeRF, a novel hybridmodel combining the strengths
of explicit parametric surface models with implicit neural represen-
tations, specifically designed to represent the greatly varying visual
properties of the periocular region. Our model enables explicit con-
trol over the gaze and to render realistic images from novel view-
points under novel illumination. EyeNeRF is well suited to generate
visually rich training data of the periocular area to train ML models,
i.e. for gaze prediction, or to create visually compelling content for
VFX productions. While our method has several limitations (see
Sec. 7) which inspire future work, it is a leap forward towards realis-
tic reproduction of one of the most challenging and most important
areas of the human face.
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A SH ENVIRONMENT MAP ROTATION
Rotating the environment map can be done in the spherical harmon-
ics domain extremely efficiently. In particular, for any given set of
SH coefficients 𝑐 (as a vector), we can compute 𝑅′ as a block diagonal
with blocks of size (1x1, 3x3, 5x5, etc. equal to the corresponding
SH order), from any given rotation matrix 𝑅. We compute 𝑅′ using
the method shown by Ivanic and Ruedenberg [1996].
For the purpose of simplicity, we assume that the spherical har-

monics coefficients and functions of order 𝑙 and degree𝑚 are stacked
into a vector. Given the matrix 𝑅′ computed from 𝑅, we have the
following property

Y(𝑅(𝜔)) = 𝑅′(Y(𝜔)) . (12)

We note that to rotate an environment map, we need to query it at
the inverse rotated locations

𝑅(𝐸) (𝜔) = 𝐸 (𝑅−1 (𝜔) , (13)
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resulting in the following equation

𝐿𝑜 (𝑥,𝜔𝑜 ) ≈
∫
Ω

order∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑐𝑙𝑚 (𝑥,𝜔𝑜 )𝑌𝑙𝑚 (𝜔𝑖 )𝐸 (𝑅−1 (𝜔𝑖 ))𝑑𝜔𝑖 . (14)

Then, we rotate both𝜔𝑖 ’s simultaneously by𝑅 by change of variables.
In particular, rotating the integral domain does nothing, and the
determinant of the Jacobian is 1 as it is a rotation.

𝐿𝑜 (𝑥,𝜔𝑜 ) ≈
∫
Ω

order∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑐𝑙𝑚 (𝑥,𝜔𝑜 )𝑌𝑙𝑚 (𝑅(𝜔𝑖 ))𝐸 (𝜔𝑖 )𝑑𝜔𝑖 (15)

We do the same reordering as in Sec. 3.3, and reinterpret the spherical
harmonics functions as the vector Y

𝐿𝑜 (𝑥, 𝜔𝑜 ) ≈
order∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑐𝑙𝑚 (𝑥, 𝜔𝑜 )
(∫

𝑆Ω
Y(𝑅(𝜔𝑖 ))𝐸 (𝜔𝑖 )𝑑𝜔𝑖

)
𝑙𝑚

.

(16)
We can then use our previously stated SH rotation property

𝐿𝑜 (𝑥, 𝜔𝑜 ) ≈
order∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑐𝑙𝑚 (𝑥, 𝜔𝑜 )
(∫

Ω
𝑅′(Y(𝜔𝑖 ))𝐸 (𝜔𝑖 )𝑑𝜔𝑖

)
𝑙𝑚

.

(17)
Using the fact that 𝐸 (𝜔𝑖 ) is a scalar, we can then reorder the equation
into the following form

𝐿𝑜 (𝑥,𝜔𝑜 ) ≈
order∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑐𝑙𝑚 (𝑥,𝜔𝑜 )𝑅′
(∫

Ω
Y(𝜔𝑖 )𝐸 (𝜔𝑖 )𝑑𝜔𝑖

)
𝑙𝑚

. (18)

We observe that this is only a slight deviation from the original
formula. Nowwemerely need to apply a single matrix multiplication
to the previously precomputed integral.

B EYE MODEL PARAMETRIZATION
Asmentioned in Section 3.1, we use amodel very similar to Schwartz
et al. [2020], with only one difference. For their eye model, they
warp a sphere into their desired shape, by using a smoothstep func-
tion conditioned on the angle of the original sphere relative to the
eye gaze direction. In particular, they define the linear blending
parameter as:

𝛼 = smoothstep(2𝜃diff + 0.5) (19)
We replace 2 and 0.5 using learnable coefficients 𝜃mod and 𝜃offset,
which are constrained to lie between 1 and 3, and -0.5 and 1.5
respectively, using a tanh function. For further details, we refer the
reader to the appendix of Schwartz et al. [2020] where they describe
their model in full detail.

C OPTIMIZATION DETAILS
In order to train the warp field more efficiently, we use annealing on
the positional encoding as proposed by Nerfies. We add a constant
offset to the sample points inside the eyeball after the rigid transfor-
mation to ensure that the rigidly transformed eyeball interior does
not overlap with the deformed periocular region volume. Further-
more, in order to allow the network to correct for cases where the
eyeball volume is misaligned with the eyeball model surface, we
learn a global 6-DoF transformation on top of the transformation
per frame, which does not affect the volume. This greatly improves
training performance when there is some initial bias.

As with Nerfies and NeRF, we use a separate coarse and fine
MLP with approximately 700k optimizable parameters each (for the
full NeRF-SHL network). The deformation MLP has appxorimately
100k optimizable parameters, plus an 8-dimensional encoding for
each frame. As explained in Section B, our eye model has 5 shape
parameters. We then have 6 parameters which encode a global rigid
transformation, plus 6 parameters per frame for the per-frame trans-
formation. Finally, we learn a scalar environment map scale factor.
We use the Adam optimizer to train our models, with a learning rate
of 0.001 which decays exponentially by a factor of 10 every 100’000
timesteps. We use a batch size of 2816 rays, with 192 coarse and
192 fine samples each. In order to improve training performance,
we learn the parameters at a different scale, by premultiplying the
underlying values with a constant factor. As Adam is invariant
to diagonal rescaling of gradients, this effectively corresponds to
different learning rates for each parameter. We use the following
empirically derived premultiplication factors:

glob. trans glob. rot trans rot v. offsets eye model
0.0005 0.05 0.0001 0.01 0.00005 0.0005

D CAPTURE DETAILS AND IMAGE PREPROCESSING
For each capture condition, we record between 1.5 to 3 minutes of
footage at 4k resolution with 24 fps. In order to have tolerance for
head motion, we use an f-stop value of 9, an ISO of 1000 and an
exposure time of 1/48 seconds, and focus the camera to the subjects’
right eyes in the neutral pose. We use ProRes 422 compression
for improved quality. In order to temporally synchronize the static
cameras and mobile camera, we turn a cell phone light on and off
briefly, and sync on the frame where it turns off. We then extract
only every 8-th frame to reduce redundancy and the amount of data
that needs to be handled. We only aim to reproduce the eye and
periocular region. As such, we crop the original image to 800x800
centered around the eye. To do so, we use the projected eyeball
center estimate as the center of the image crop. This also allows
to estimate a near and far culling plane, which we define as 10
cm in front of and behind the eyeball center. We then discard the
frames with bad or nonexistent AR tag detection, for example due
to motion blur or poor illumination quality. Finally, to minimize
the data handling, we randomly sample a set of frames from each
capture condition for training. We use 100 frames from the sequence
where the subject follows the mobile camera with their gaze. For the
three other conditions, we sample 40 frames each from the sequences
where they look at each of the four static cameras, resulting in a
total of 160 frames each. This results in a total of 580 training frames
for each of the 4 camera views.
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